Расчет электрической дуги в канале в аксиальном магнитном поле Урусова И. Р.¹, Урусова Т. Э.²

¹Урусова Индира Руслановна / Urusova Indira Ruslanovna - кандидат физико-математических наук, старший научный сотрудник; ²Урусова Толкун Эсеновна / Urusova Tolkun Esenovna - кандидат физико-математических наук, ведущий научный сотрудник, Институт физико-технических проблем и материаловедения, Национальная академия наук Кыргызской Республики, г. Бишкек

Аннотация: в рамках трехмерной нестационарной математической модели в приближении частичного локального термодинамического равновесия плазмы выполнен расчет электрической дуги постоянного тока, горящей в канале во внешнем аксиальном магнитном поле. По результатам расчета получена винтовая форма столба дуги.

Ключевые слова: электрическая дуга, численное моделирование, трехмерная нестационарная математическая модель, внешнее магнитное поле, винтовая форма дуги.

Введение. Известно, что цилиндрическая осевая симметрия протяженной электрической дуги при наложении внешнего аксиального магнитного поля (ВАМП) может нарушаться, и дуга принимает винтовую пространственную форму [1–3]. Принято считать, что причиной перехода столба дуги от цилиндрической формы к винтовой являются малые флуктуации параметров дуговой плазмы.

Экспериментальные и теоретические исследования винтовой формы дуги сравнительно немногочисленны, практически отсутствуют численные исследования в рамках трехмерных математических моделей. В связи с этим изучение физических процессов формирования винтовой формы дуги представляет определенный научный интерес.

Постановка задачи и математическая модель. В цилиндрическом канале длиной L, диаметром D в аргоне атмосферного давления горит электрическая дуга постоянного тока с межэлектродным расстоянием l. Условная схема расчетной области показана на рис.1. Катодом «–» и анодом «+» являются графитовые цилиндрические стержни с плоской токоведущей поверхностью. Внешнее аксиальное однородное магнитное поле H^x совпадает с направлением оси x декартовой системы координат x, y, z.

Нестационарная трехмерная система уравнений в приближении частичного локального термодинамического равновесия (ЧЛТР) плазмы может быть записана в следующем виде [4–6]:

Рис. 1. Условная схема расчетной области дуги в канале во внешнем аксиальном магнитном поле H^x

уравнение непрерывности газа тяжелых частиц:		
$\partial \rho / \partial t + \operatorname{div}(\rho \mathbf{V}) = 0$	(1)	
уравнение непрерывности газа электронов:		
$\partial N_e / \partial t + \operatorname{div}(N_e \mathbf{V_e}) = R_e$	(2)	
уравнение сохранения энергии газа электронов:		
$\partial/\partial t (3/2kT_e + U_i)N_e + \operatorname{div}[(5/2kT_e + U_i)N_e\mathbf{V}_e] = \operatorname{div}(\lambda_e \operatorname{grad} T_e) + \mathbf{j}^2/\sigma - \psi - B(T_e - \mathcal{I}_e)$	Г)	(3)
уравнение сохранения энергии газа тяжелых частиц:		
$\partial/\partial t[3/2kT(N_i+N_a)] + \operatorname{div}[5/2kT(N_i+N_a)\mathbf{V})] = \operatorname{div}(\lambda \operatorname{grad} T) + B(T_e - T)$	(4)	
уравнение баланса импульса газа вдоль осей координат x, y, z:		
$\partial \rho u / \partial t + \operatorname{div}(\rho \mathbf{V} u) = \operatorname{div}(\mu \operatorname{grad} u) - \partial P / \partial x + \mu_0 (\mathbf{j} \times \mathbf{H})_x + s_x + (\rho - \rho_\infty) \mathbf{g}$	(5)	
$\partial \rho_{\mathcal{M}} \partial e + \operatorname{Build}(\rho \mathbf{M}_{\mathcal{M}}) = \operatorname{Build}(\mu \pi \kappa \varphi_{\mathcal{B}_{\mathcal{M}}}) - \partial \partial \partial \theta + \mu_0 (0 \times \mathbf{P})_{\mathcal{H}} + \delta \theta_{\mathcal{H}}$	(6)	
$\partial \rho q.\partial e + \operatorname{BIIM}(\rho \mathbf{M} q) = \operatorname{BIIM}(\mu \pi \kappa \varphi B q) - \partial 3.\partial \pi + \mu_0 (0 \times \mathbf{P})_{\pi} + bi$		(7)
уравнения Максвелла:		

кще $\mathbf{Y} = 0$ б кще $\mathbf{P} = 06$ вши $\mathbf{P} = 0$ б	(8)
закон Ома в обобщенной форме:	
$\mu_0 (\mathbf{M} \times \mathbf{P}) + \mathbf{Y} = 0 \cdot \boldsymbol{\sigma} + (\mu_0 0 \times \mathbf{P} - \mathbf{\Pi} \mathbf{K} \mathbf{\phi} \mathbf{B} \ \boldsymbol{\beta}_y) \cdot \boldsymbol{u}_y T_y$	(9)
закон парциальных давлений:	
$P/kT = N_i + N_a + N_e T_e/T.$	

При записи системы уравнений приняты обозначения: $t - время, \rho - плотность дуговой плазмы, \rho_{\infty} - плотность окружающего холодного газа, <math>\lambda_e$ – коэффициент теплопроводности газа электронов, λ – коэффициент теплопроводности газа электронов, λ – коэффициент излучения, N_i , N_a , N_e – концентрация ионов, атомов и электронов, $R_e = (K_i N_e N_a - K_r N_e^2 N_i)$ – скорость генерации электронов, K_i – константа ударной ионизации, K_r – константа трехчастичной рекомбинации, U_i – ионизационный потенциал плазмообразующего газа, $P_e = N_e k T_e$ – парциальное давление электронного газа, k – постоянная Больцмана, B – коэффициент энергообмена между электронами и тяжелыми частицами (атомы, ионы) при соударениях, \mathbf{g} – ускорение свободного падения, q_e – элементарный электрический заряд (электрона), μ_0 – магнитная константа, \mathbf{V} – вектор скорости газа, \mathbf{E} , \mathbf{H} , \mathbf{j} – соответственно векторы напряженности электрического поля, собственного газа, P – давление, u, v, w – компоненты вектора скорости \mathbf{V} в направлении осей x, y, z, $\mathbf{V_d} = \mathbf{j}/(q_e N_e)$ – вектор скорости дрейфа электронов, $V_t = - D_a/T_e \text{grad} T_e$ – вектор скорости термодиффузии, $\mathbf{V_e} = \mathbf{V} + \mathbf{V_d} + \mathbf{V_t} + \mathbf{V_a}$ суммарная скорость электронов, s_z, s_y, s_x – вязкие слагаемые.

(10)

(13)

Принято, что дуговая плазма является однократно ионизованной, квазинейтральной, течение ламинарное, дозвуковое, излучение объемное; вязкой диссипацией энергии, индукционными токами пренебрегается [4]. Приэлектродные процессы не рассматриваются. Коэффициенты переноса и свойства плазмы аргона являются функциями температуры электронов и тяжелых частиц и рассчитываются в соответствии с известной методикой [4].

Электромагнитная часть задачи решается с использованием скалярного потенциала электрического поля φ и векторного магнитного потенциала **A**. Используя известные соотношения **E** = – grad φ , rot**A**=**H**, закон Ома, закон неразрывности электрического тока div**j** = 0 и уравнения Максвелла, получим уравнения для расчета скалярного потенциала φ и компонент векторного потенциала A_z , A_y , A_x , которые имеют следующий вид:

div(σ grad ϕ)=div[$\sigma\mu_0$ (V × H) $-\sigma(\mu_0$ j × H $-$ grad P_e)/ q_eN_e],	(11)
$\operatorname{div}(\operatorname{grad} A_x) = -j_x$, $\operatorname{div}(\operatorname{grad} A_y) = -j_y$, $\operatorname{div}(\operatorname{grad} A_z) = -j_z$.	(12)

Отметим, что в работе [7] предложена математическая модель, которая позволяет описывать процессы в канале МГД-устройства с коническим осесимметричным каналом, не прибегая при этом к решению сложных дифференциальных уравнений.

Исходная система уравнений (1–12) для рассчитываемых переменных после несложных преобразований может быть записана согласно известной методике [8] в виде обобщенного дифференциального уравнения:

 $\partial \alpha \rho \Phi / \partial t + \operatorname{div}(\beta \rho \mathbf{V} \Phi) = \operatorname{div}(\gamma \operatorname{grad} \Phi) + \delta$

где Φ – одна из переменных: A_z , A_y , A_x , φ , w, v, u, T_a^k , T, T_e , N_e , коэффициенты α , β , γ , δ зависят от смысла переменной Φ .

Дискретизация нестационарного обобщенного дифференциального уравнения (13) проводится по неявной разностной схеме методом контрольного объема [8], численное решение конечно-разностного аналога проводится методом Зейделя-Гаусса с применением нижней релаксации. Используется метод фиктивных областей [9], адаптированный для расчета характеристик электрической дуги [10].

Граничные и начальные условия. Во входном и выходном круговых сечениях канала (см. рис.1) для расчетных характеристик дуги задаются условия $\partial \Phi / \partial x = 0$ гладкого сопряжения с внешней средой. Потенциал электрического поля φ рассчитывается из условия протекания тока по нормали к токоведущим торцевым поверхностям электродов.

Значения температуры и концентрации электронов равны значениям температуры T_e^{\min} и концентрации N_e^{\min} «холодного» не ионизованного газа: $T_e = T_e^{\min} = 3$ кК, $N_e = N_e^{\min} = 10^{17}$ м⁻³. На боковой поверхности канала течение электрического тока отсутствует, скорость газа равна нулю,

На боковой поверхности канала течение электрического тока отсутствует, скорость газа равна нулю, температура полагается равной 500 К. Температура и концентрации электронов равны $T_e = T_e^{\min}$, $N_e = N_e^{\min}$.

При постановке начальных условий при t = 0 полагается, что между электродами существует токопроводящая высокотемпературная (T = 10 кK) зона в форме цилиндра с неподвижным газом.

Обсуждение результатов. Выполнен расчет дуги силой тока I = 40 А, длиной l = 10 см в канале длиной L = 12 см и диаметром D = 10 мм. Величина ВАМП равна $H^x = 6$ кА/м. Сеточный шаг разностной задачи в направлениях осей *x*, *y*, *z* одинаковый $\Delta = 0.5$ мм, временной шаг $\tau = 10^{-4}$ с.

На рис. 2*a* приведена эволюция расчетных распределений температуры дуги в вертикальном среднем сечении X-Y при z/2 (качественно такие же расчетные распределения наблюдаются в вертикальном среднем сечении X-Z при y/2). Укажем, что в течение первых 100 мс после инициировании разряда, численный расчет характеристик дуги проводится без ВАМП.

В дальнейшем, при наложении ВАМП, на интервале времени примерно 100 \div 280 мс наблюдается переход от цилиндрической формы столба дуги к винтовой форме. С момента времени t > 300 мс изменения характеристик и формы столба дуги не значительны, и к моменту t = 400 мс численный расчет был остановлен. Обращает на себя внимание, что винтовые возмущения зарождаются вблизи анода «+» и распространяются с течением времени в сторону катода «–». Причины этого требуют дополнительных исследований. Следует сказать, что физика процессов, обусловливающих винтовую форму столба дуги, является достаточно сложной и до конца не изученной [1–3].

В канале наблюдается система вихрей, скалярное поле скорости газа, определяемое по формуле $V = \sqrt{u^2 + v^2}$, показано на рис. *36*. Отметим, что в отсутствие осевой симметрии протекающих процессов характер течения дуговой плазмы является достаточно сложным, и без трехмерной графики представить общую картину течения весьма затруднительно.

Рис. 2. Распределения температуры газа T и скалярного поля скорости газа V в различные моменты времени t. I = 40 A, l = 10 cm, $H^{x} = 6 \kappa A/m$.

Заключение. В рамках нестационарной трехмерной математической модели в приближении частичного локального термодинамического равновесия плазмы численно реализована винтовая форма электрической дуги во внешнем аксиальном магнитном поле, горящая в цилиндрическом канале. Результаты численного расчета удовлетворительно согласуются с результатами эксперимента [3]. Предложенная математическая модель может быть использована в исследовании причин, обусловливающих переход от цилиндрической формы столба дуги к винтовой форме при наличии ВАМП.

Литература

- 1. Maecker H. Principles of arc motion and displacement, Proc. IEEE, 1971, Vol. 59, No. 4, P. 439–449.
- 2. *Ментель Ю*. Магнитная неустойчивость электрической дуги // Теория электрической дуги в условиях вынужденного теплообмена. Новосибирск. Наука, Сибирское отделение, 1977. С. 182–204.
- Асиновский Э. И., Кузьмин А. К., Пахомов Е. П. Измерение геометрических параметров винтовой дуги // М.: Теплофизика высоких температур, 1980. т. 18. № 1. С. 9-15.
- 4. Энгельшт В. С., Гурович В. Ц., Десятков Г. А. и др. Низкотемпературная плазма, т. 1. Теория столба электрической дуги. Новосибирск: Наука, 1990. 374 с.
- 5. Чередниченко В. С., Аньшаков А. С., Кузьмин М. Г. Плазменные электротехнологические установки. Новосибирск: НГТУ, 2005. 508 с.
- 6. *Урусов Р. М., Урусова, И. Р.* Нестационарная трехмерная модель электрической дуги, ч. 1. Математическая модель и результаты тестирования // Теплофизика и аэромеханика, 2014. т. 21, № 1. С. 121–134.
- 7. Хайруллин И. Х., Камалов Ф. А. Математическое моделирование процессов в канале МГД-устройства с коническим осесимметричным каналом // Инженерный вестник Дона, 2012, № 4, [Электронный ресурс]. Режим доступа: URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1444.
- 8. Patankar S. V. Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp., New York, 1980.
- 9. Смагулов Ш., Сироченко В. П., Орунханов М. К. Численное исследование течений жидкости в нерегулярных областях. Алматы, 2001. 276 с.
- 10. *Урусов Р. М., Урусова Т. Э.* Применение метода фиктивных областей для расчета характеристик электрической дуги // М.: Теплофизика высоких температур, 2004. т. 42. № 3. С. 374–382.