О некоторых свойствах *P* – секвенциально непрерывных отображениях Болжиев Б. А.

Болжиев Бурас Асанбекович / Boljiev Buras Asanbekovich - кандидат физико-математических наук, старший научный сотрудник,

Национальная академия наук Кыргызской Республики институт теоретической и прикладной математики Кыргызский национальный университет им. Ж. Баласагына, г. Бишкек, Кыргызская Республика

Аннотация: в статье обобщается понятие секвенциально непрерывного отображения, и изучаются свойства введенного понятия.

Ключевые слова: ультрафильтр, p — секвенциально компактное пространство, p — компактные подмножества.

Пусть p является свободным ультрафильтром на ω . В топологическом пространстве X последовательность $(\mathbf{x}_n:\mathbf{n}\in\omega)$ обладает p-предельной точкой x, обозначаемое как $x=p-\lim x_n$, если для любой окрестности O_x точки x $\{\mathbf{n}:\mathbf{x}_n\in O_x\}\in p$. Пространство X называется p-компактным, если произвольная последовательность обладает p-предельной точкой. Если точка x является p-предельной точкой последовательности $(\mathbf{x}_n:\mathbf{n}\in\omega)$, то можно будет говорить, что последовательность $(\mathbf{x}_n:\mathbf{n}\in\omega)$ p-сходится x0 точке x1, или x2 является x2 пределом этой последовательности.

Эти понятия были предложены Бернштейном [1]; они играют важную роль в теории, касающейся произведений счетно компактных пространств([5], [8]).

Комбарова [3] ввёл понятия P – компактности и P – секвенциальности, где $P \subset \beta \omega \setminus \omega$ – является непустым множеством свободных ультрафильтров на ω .

В работе [4] он определил условия, при которых условия P – компактности и P – секвенциальности сохраняются при операции произведения.

В.Сакс [6] (см. также [7]) обобщает понятие p -предела на направленности, заиндексированные произвольными бесконечными кардиналами следующим образом: пусть p является свободным ультрафильтром на τ и ($\mathbf{x}_{\alpha}:\alpha\in\tau$) является τ – последовательностью в пространстве X, тогда точка x является p – предельной точкой (p – пределом) τ – последовательности ($\mathbf{x}_{\alpha}:\alpha\in\tau$), $\mathbf{x}=\mathbf{p}-\mathbf{limx}_{\alpha}$, если для произвольной окрестности U точки x, { $\alpha\in\tau:\mathbf{x}_{\alpha}\in U$ } $\in p$.

Мы будем также говорить, что $(\mathbf{x}_{\alpha}:\alpha\in\tau)$ p-сходится к x, если $\mathbf{x}=\mathbf{p} \lim_{\alpha}$. В.Сакс также доказывает, что любое топологическое пространство характеризуется своими p-пределами в том смысле, что для любого $A\subset X$, $\overline{A}=A\cup\{\mathbf{x}\in X:x$ является p-пределом некоторой λ -последовательности $(\mathbf{x}_{\alpha}:\alpha\in\lambda)$ для некоторого $\lambda\leq\tau=X$ и некоторого ультрафильтра $p\in\beta\lambda\setminus\lambda\}$.

В свете этого факта мы ограничим наше внимание к случаю $P \subset \beta \tau \setminus \tau$ для некоторого τ , причём P обладает следующим свойством: пусть $\mathbf{x} = \mathbf{p} - \mathbf{lim} \mathbf{x}_{\alpha}$ для любого $p \in P$, тогда и любая последовательность τ – подпоследовательность ($\mathbf{x}_{\alpha_{\beta}} : \alpha \in \tau$) также p – сходится к точке x при любом $p \in P$. Очевидно, что такие P существуют, например, в случае $\tau = \omega$ и $P = \beta \omega \setminus \omega$ получим требуемое P.

Следуя терминологии Л. Кочинаса [10], будем в этом случае говорить, что $\tau-$ последовательность $(\mathbf{x}_{\alpha}:\alpha\in\tau)$ сильно P- сходится к точке x и писать $x=sP-\lim_{\alpha}$.

ОПРЕДЕЛЕНИЕ 1. Отображение $f: X \to Y$ назовём P—секвенциально непрерывным, если оно переводит сильно P—сходящиеся последовательности в сильно P—сходящиеся, т.е. из того, что $x = sP - \lim_{\alpha}$ следует, что $f(x) = sP - \lim_{\alpha} (x_{\alpha})$.

Если топологическое пространство X таково, что всякая сильно P—сходящаяся последовательность сильно P—сходится только к одной точке, то такое пространство, мы будем говорить, обладает единственными P—пределами.

ОПРЕДЕЛЕНИЕ 2. Отображение $f: X \to Y$ назовём P—секвенциально замкнутым, если оно переводит P—секвенциально замкнутые множества в P—секвенциально замкнутые множества. Подмножество M назовём P—секвенциально замкнутым, если всякая сильно P—сходящаяся последовательность из M сильно P—сходится к точке из M.

ПРЕДЛОЖЕНИЕ 1. Топологическое пространство X обладает единственными P – пределами тогда и только тогда, когда диагональ пространства X является P – секвенциально замкнутым в $X \times X$.

ДОКАЗАТЕЛЬСТВО. Пусть пространство X обладает единствеными P-пределами и диагональ $\Delta = \{(\mathbf{x},\mathbf{x}): \mathbf{x} \in X\}$ не является P-секвенциально замкнутым в $X \times X$. Тогда найдётся τ -последовательность $\{\mathbf{z}_{\alpha} = (\mathbf{x}_{\alpha},\mathbf{x}_{\alpha}): \alpha \in \tau\}$ и точка $z \in X \times X$ такая, что $z = (\mathbf{x},\mathbf{y})$, $x \neq y$ и τ -последовательность $(\mathbf{z}_{\alpha} : \alpha \in \tau)$ сильно P-сходится к точке z, т.е. $z = p - \lim z_{\alpha}$ для любого $p \in P$. Так как отображения проектирования π_X на первый и второй сомножители пространства $X \times X$ непрерывны, то $\mathbf{x} = \mathbf{p} - \lim z_{\alpha}$ для любого $p \in P$ и $y = \mathbf{p} - \lim z_{\alpha}$ для любого $p \in P$, но $x \neq y$. Таким образом, мы пришли к противоречию.

Обратно, пусть теперь au – последовательность ($\mathbf{x}_{\alpha}: \alpha \in au$) сильно P – сходится к двум различным точкам x и y. Тогда, как нетрудно, видеть au – последовательность ($\mathbf{z}_{\alpha}: \alpha \in au$) сильно P – сходится к точке $z = (\mathbf{x}, \mathbf{y})$, $x \neq y$.

Следовательно, диагональ $\Delta \subset X \times X$ не является P – секвенциально замкнутой.

ПРЕДЛОЖЕНИЕ 2. Если отображение $f: X \to Y$ является P—секвенциально непрерывным, тогда $f^{-1}(A)$ является P—секвенциально замкнутым для любого P—секвенциально замкнутого подмножества A пространства Y.

Пусть отображение f является P—секвенциально непрерывным и A P—секвенциально замкнуто в Y. Если $f^{-1}(A)$ не является P—секвенциально замкнутым множеством в, тогда найдётся τ —последовательность $(\mathbf{X}_{\alpha}:\alpha\in\tau)\subset f^{-1}(A)$, сильно P—сходящаяся к точке $x\in X\setminus f^{-1}(A)$ и в силу P—секвенциальной непрерывности отображения f τ —последовательность $(\mathbf{y}_n=f(\mathbf{x}_{\alpha}):\alpha\in\tau)$ сильно P—сходится к точке $y=f(\mathbf{x})\not\in A$, что противоречит P—секвенциальной замкнутости множества A.

ПРЕДЛОЖЕНИЕ 3. Пусть τ — последовательность ($\mathbf{x}_{\alpha}:\alpha\in\tau$) T_1 — пространства X такова, что никакая её τ — подпоследовательность не является сильно P — сходящейся. Тогда множество $A = \{(\mathbf{x}_{\alpha},\alpha):\alpha\in\tau\}\}$ является P — секвенциально замкнутым подмножеством пространства $X\times\tau(P)$.

ОПРЕДЕЛЕНИЕ 3. Топологическое пространство X назовём P—секвенциально P—компактным, если любое бесконечное множество содержит сильно P—сходящуюся τ —последовательность.

Как нетрудно видеть, понятия P—секвенциальной компактности и P—компактности не совпадают даже в самом простом случае, т.е. когда P состоит из одной точки (одного ультрафильтра). Примером может служить пространство $\beta(\omega)\setminus\{p\}$. Оно не является p—компактным, но оно является p—секвенциально компактным. Но в свою очередь, любое p—компактное пространство является p—секвенциально компактным. В случае $P=\omega^*$, мы получаем обычное понятие секвенциальной компактности, где $\omega^*=\beta(\omega)\setminus\omega$.

Непосредственно из последнего определения получаем следующие утверждения:

- а) P—секвенциально непрерывный образ P—секвенциально компактного пространства является P—секвенцильно компактным пространством.
- b) P—секвенциально компактное подмножество пространства, обладающего единственными P—пределами, является P—секвенциально замкнутым.
- с) P—секвенциально замкнутое подмножество P—секвенциально компактного пространства является P—секвенциально компактным подмножеством.

ОПРЕДЕЛЕНИЕ 4. P- секвенциально непрерывное отображение $f: X \to Y$ называется P- секвенциально совершенным отображением, если $f \times 1_Z: X \times Z \to Y \times Z$ является P- секвенциально замкнутым для любого пространства Z, где 1_Z является тождественным отображением пространства Z. Нетрудно заметить, что в случае, $P=\omega^*$ наше определение превращается в секвенциально совершенное отображение [2].

Следующая теорема является аналогом теоремы о произведениисовершенных отображений [9].

ТЕОРЕМА 1. Пусть отображения $f_1: X_1 \to Y_1$ $f_2: X_2 \to Y_2$ являются P—секвенциально совершенными отображениями. Тогда отображение $f = f_1 \times f_2$ также является P—секвенциально совершенным. Обратно, если отображение f является P—секвенциально совершенным, то и отображения f_1 и f_2 являются P—секвенциально совершенными.

ДОКАЗАТЕЛЬСТВО. В доказательстве используется метод, предложенный Бурбаки [9]. Пусть отображения f_1 и f_2 являются P- секвенциально совершенными. Нетрудно догадаться, что композиция P- секвенциально замкнутых отображений является P- секвенциально замкнутым отображением. Возьмём произвольное топологическое пространство Z. Отображение $f_1 \times f_2 \times 1_Z$, очевидным образом, является композицией отображений $1_{V_1} \times f_2 \times 1_Z$ и $f_1 \times 1_{V_2} \times 1_Z$, которые в силу предположения P- секвенциально замкнуты. Действительно, отображения $1_{V_1} \times 1_Z$ и $1_{V_2} \times 1_Z$ являются тождественными отображениями пространств $Y_1 \times Z$ и $Y_2 \times Z$, а отображения $Y_1 \times Y_2$ являются $Y_2 \times Y_3$ является $Y_3 \times Y_4$ является $Y_4 \times Y_5$ является $Y_5 \times$

Обратно, пусть отображение f является P-секвенциально совершенным, Z- произвольное топологическое пространство. Пусть K- P-секвенциально замкнутое подмножество пространства $X_2 \times Z$ и T его образ в $Y_2 \times Z$ при оотображении $f_2 \times 1_Z$. Очевидно, что множество $(f \times 1_Z)(X_1 \times F)$ в $Y_1 \times Y_2 \times Z$ совпадает с $f_1(X_1) \times T$. В силу P-секвенциальной совершенности отображения f и P-секвенциальной замкнутости множества K, множество $f_1(X_1) \times T$ P-секвенциально замкнуто в $Y_1 \times Y_2 \times Z$. Но тогда множество T P-секвенциально замкнуто в $Y_2 \times Z$, так как произведение двух множеств P-секвенциально замкнуто тогда и только тогда, когда P-секвенциально замкнуты сомножители. Таким образом, отображение f_2 является P-секвенциально совершенным.

TEOPEMA 2. Пусть отображения $f: X \to Y$ и $g: Y \to Z$ являются P- секвенциально непрерывными.

- а) если f и g P-секвенциально совершенны, то и $g \circ f$ P-секвенциально совершенно.
- b) если $g \circ f$ является P—секвенциально совершенным отображением и f отображение «на», то и g P—секвенциально совершенное отображение.
- с) если $g\circ f$ является P-секвенциально совершенным отображением и g взаимно однозначно, то f P-секвенциально совершенное отображение.
- d) если $g \circ f$ является P—секвенциально совершенным отображением и Y обладает единственными пределами, тогда f P—секвенциально совершенное отображение.

ДОКАЗАТЕЛЬСТВО. а) Пусть f и g P-секвенциально совершеннем отображениея и F P-секвенциально замкнутое подмножество пространства $X\times Q$, где Q-произвольно выбранное топологическое пространство. Очевидно, что $((g\circ f)\times 1_Q)F=(g\circ 1_Q)\circ ((f\times 1_Q)F)$ откуда, в силу предположения, множество $((g\circ f)\times 1_Q)F$ является P-секвенциально замкнутым. Итак, отображение $g\circ f$ является P-секвенциально совершенным.

- b) Пусть $g \circ f$ секвенциально совершенное отображение и f отображение «на». Рассмотрим множество $(g \circ 1_Q)A$, где A P-секвенциально замкнутое подмножество в $Y \times Q$. Учитывая, тот факт, что f является отображением «на» и отображение $f \times 1_Q$ является P-секвенциально непрерывным, мы получаем P-секвенциальную замкнутость множества $(f \times 1_Q)^{-1}A$ и следующее соотношение: $((g \circ f) \times 1_Q) \circ ((f \times 1_Q)^{-1}A) = (g \times 1_Q)A$. Из этого соотношения следует, что $(g \circ 1_Q)A$ является P-секвенциально замкнутым отображением. Таким образом, отображение g P-секвенциально совершенно.
- с) Пусть отображение $g\circ f$ является P-секвенциально совершенным и g-взаимно однозначно. Возьмём произвольное P-секвенциально замкнутое подмножество F пространства $X\times Q$. Очевидно, что $((g\circ f)\times 1_Q)F=(g\times 1_Q)\circ ((f\times 1_Q)F)$ и множество $((g\circ f)\times 1_Q)F$ является P-секвенциально замкнутым, откуда в силу взаимной однозначности отображения g и P-секвенциальной непрерывности отображения $g\times 1_Q$ следует, что множество $(g\times 1_Q)^{-1}((g\times f)\times 1_Q)F$ P- секвенциально замкнуто и $((g\circ f)\times 1_Q)F=(f\times 1_Q)F$, т.е. отображение f P-секвенциально совершенно.
- d) Пусть $g \times f$ является P-секвенциально совершенным отображением и Y обладает единственными P-пределами. Положим $\varphi(x) = (x, f(x))$ и $\psi(y) = (g(y), y)$, т.е. определены отображения $\varphi: X \to Y$ и $\psi: Y \to Z \times Y$. Очевидно, отображение φ P-секвенциальным гомеоморфизмом пространства X на график отображения f и отображение ψ является P-секвенциальным гомеоморфизмом пространства Y на пространство, симметричное графику отображения g. Учитывая предположение, мы получаем, что график $\varphi(X)$ отображения f P-секвенциально замкнут в $X \times Y$, откуда нетрудно вывести, что отображение φ является P-секвенциально совершенным. Из теоремы 1 следует, что отображение $((g \circ f) \times 1_Y) P$ -секвенциально совершенно, а тогда в силу а) и того, что $(g \circ f) \times 1_Y) \circ \varphi = \psi \circ f$ и в силу взаимной однозначности отображения ψ из с) следует, что f P-секвенциально совершенно.

Нижеследующая теорема является P – секвенциальным аналогом теоремы о секвенциально непрерывных отображениях [2].

ТЕОРЕМА 3. Пусть отображение $f: X \times Y$ является P—секвенциально непрерывным и пространство Y обладает единственными P—пределами. Рассмотрим следующие условия:

- а) f P-секвенциально совершенное отображение
- b) $f \times 1_O : X \times \tau P \to Y \times \tau P$ является P секвенциально замкнутым отображением
- с) если τ последовательность ($s_{\alpha}: \alpha \in \tau$) такова, что никакая её τ подпоследовательность не является сильно P сходящейся, тогда ($f(s_{\alpha}): \alpha \in \tau$) не содержит никакой сильно P сходящейся τ подпоследовательности в Y.
- d) если B P—секвенциально компактное подмножество пространства Y, тогда $f^{-1}(B)$ является P—секвенциально компактным подмножеством пространства X.

В этом случае c) \Rightarrow d), a) \Rightarrow b), если же пространство X является T_1 – пространством, тогда b) \Rightarrow c). Множество S - это множество $\cup \{s_\alpha : \alpha \in \tau\}$ со всеми P – пределами.

ДОКАЗАТЕЛЬСТВО c) \Rightarrow d). Пусть $(s_{\alpha}:\alpha\in\tau)$ τ -последовательность в $f^{-1}(B)$. Если τ -последовательность $(s_{\alpha}:\alpha\in\tau)$ не содержит ни одной сильно P-сходящейся τ -подпоследовательности в X, тогда $(f(s_{\alpha}):\alpha\in\tau)$ не содержит никакой сильно P-сходящейся τ -подпоследовательности по свойству c). Но так как $(f(s_{\alpha}):\alpha\in\tau)\subset B$, то это противоречит P-

секвенциальной компактности множества B . Поэтому τ —последовательность $(s_{\alpha}:\alpha\in\tau)$ содержит сильно P — сходящуюся τ — подпоследовательность $(s_{\alpha_k}:k\in\tau)$ к некоторой точке x и тогда $(f(s_{\alpha_k}):k\in\tau))$ сильно P — сходится к точке f(x) . В силу P — секвенциальной компактности множества B и в силу того, что Y обладает единственными P — пределами, B является P — секвенциально замкнутым. Следовательно, $f(x)\in B$ и $(s_{\alpha_k}:k\in\tau)$ сильно P — сходится к точке $x\in f^{-1}(B)$.

a) ⇒ b) – это следует сразу из определения.

b) \Rightarrow c) Пусть пространство X является T_1 – пространством, тогда наша импликация следует из предложения 3.

Литература

- 1. Bernstein A. R.. A new kind of compactness for topological spaces // Fund. Math. 1970. V.66, P.185-193.
- 2. *Brown R*.. On sequentially proper maps and a sequential compactification // Journ. London Math. Soc.-1974.- V.7, № 3. –P.515-522.
- 3. Комбаров А. П.. Об одной теореме А. Х.Стоуна // Докл. АН СССР.-1983.-Т.270, № 1.-С.37-40.
- 4. *Комбаров А. П.*. О компактности и секвенциальности по множеству ультрафильтров. // Вестник МГУ. Серия матем., мех.-1985.-Т.5.-С.15-18.
- 5. Ginsburg J., Saks V.. Some applications of ultrafilters in topology // Pacific Journ. Math.-1978.-V.57, № 2.-P.403-408/V. Saks. Ultrafilters invariants in topological spaces // General Topol. And Appl.-1974.-V.4, № 1.-P.1-28.
- 6. *Stephenson R. M.*. Initially k-compact and related spaces, In: K. Kunen and J. E. Vaughan, eds., Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 569-602.
- 7. Vaughan J. E.. Countably compact and sequentially compact spaces. Ibid., 603-632.
- 8. Бурбаки. Общая топология. Основные структуры. М.:Наука, 1968.-272с.
- 9. *Kocinac L.*. A generalization of chain-net spaces. Publications De L'institut Mathematique. Nouvelle serie tome 44 (58), 1988. pp.1089-114.