Разработка методов моделирования и исследование воздействия плазмы и нагретого воздуха на двигатели летательных аппаратов Христофоров Б. Д.

Христофоров Борис Дмитриевич / Khristoforov Boris Dmitrievich - доктор технических наук, кандидат физико-математических наук, профессор геофизики, ведущий научный сотрудник, лаборатория литосферно-геосферных связей, Институт динамики геосфер РАН, г. Москва

Аннотация: разработаны методы моделирования воздействия плазмы и нагретого воздуха на двигатели летательных аппаратов при взрывах и разрядах. Определены уровни энергии необходимые для нарушения газодинамической устойчивости двигателей при разных режимах их работы на низких высотах и дозвуковых скоростях.

Ключевые слова: электрический разряд, лазерное облучение, плазма, нагретый воздух, газодинамическая устойчивость, двигатели самолетов, моделирование.

Введение

Взрывы ВВ, электрические разряды и лазерное облучение в режимах плазмообразования широко применяются в производстве, научных исследованиях, моделировании динамических процессов взрывного типа в геофизике [1, 2]. Проведены многочисленные разработки, связанные с их моделированием [3, 4]. Возможность направлять и концентрировать действие взрыва, разряда и облучения трубами широко применяется при модельных исследованиях [5, 6]. Меняя состав продуктов взрыва ВВ, можно менять параметры испускаемого излучения для защиты летательных аппаратов от ракет с самонаведением [7, 8]. Разработанные методы моделирования действия молнии и грома электрическим разрядом и лазерным облучением и измерительная аппаратура рассмотрены в [2, 3, 7]. Ниже приведены результаты исследований параметров ударных волн и плазмы при взрывах, разрядах и лазерном облучении на входе и внутри воздухозаборников летательных аппаратов для моделирования воздействия гроз, пожаров на летательные аппараты и определения характерных уровней энергии воздействия необходимой для нарушения газодинамическеой устойчивости реактивных двигателей.

Методика и аппаратура

На рис.1, 2 показаны типичные установки для отработки методик и проведения модельных исследований, а также фотография ударной волны (УВ) вытекающей из трубы при взрыве в ней ВВ [2]. На рис.3 показан характерный самолет, применявшийся в модельный исследованиях.

Рис. 1. Исследование действия взрыва ВВ в трубах и фотография УВ вытекающей из трубы после взрыва

Рис. 2. Слева - воздухозаборник летательного аппарата

Справа разряд на конусе у входа в воздухозаборник вид сбоку, время слева направо и сверху вниз, между кадрами 13,5 мкс. Внизу затекание плазмы разряда в воздухозаборник. Вид спереди, время между кадрами 330 мкс. Энергия разряда $E_3 = 18$ кДж.

Рис.3. Самолёт похожий на применявшийся в модельных исследованиях

В опытах с разрядом применялась батарея конденсаторов емкостью до 13000 мкФ, напряжением до 5 кВ, запасаемой энергией до 160 кДж. При разряде батареи через плоский проводник возникал электрический взрыв. При облучении преград импульсными лазерами на длине волны 1,315 мкм возникал плазменный факел с параметрами характерными для разряда с той же энергией. При взрывах, разрядах и облучении скоростные фотокамеры с разных направлений регистрировали плазменный факел. Для измерения параметров лазерного излучения применялся специальный измерительный комплекс [1,2].

Результаты измерений.

В таблицах 1, 2 и рис.4 приведены различные варианты измерений параметров УВ при взрывах ВВ на входе в трубы, где mQ – энергия взрыва, L, X – длина труб и расстояние от заряда до датчика, ΔP_M, τ₊, I₊, J₊ соответственно приращение максимального давления, длительность, полный и удельный импульс положительной фазы УВ.

mQ, кДж	І, Нсек	J, Пас	∆Р _м , МПа	mQ/S, МДж/м ²	mQ, кДж	І, Нсек	Ј, Пас	ΔР _м , МПа	mQ/S, МДж/м ²	
	L = 1 м, r =	0,075 м, 5	S = 0,0177	L = 0,5 м, r = 0,046 м, S = 0,00664 м ²						
Взрывы у открытого конца труб										
52,5	27,9	1580	10	2,98	52,5	24,5	3700	62	7,91	
76	36,4	2070	13,7	4,3	68,4	31	4700	85	10,4	
	Взрывы у закрытого конца труб									
26,3	27,4	1550	9,1	1,49	26,3	23,6	3550	61	3,96	
40,6	40,7	2300	14,8	2,30	38,7	34,4	5180	94	5,83	

Таблица 1. Параметры отраженных УВ на расстоянии L в трубах при взрывах ВВ

Таблица 2. Параметры выходящих их труб УВ на расстоянии Х при взрывах ВВ

mQ, кДж	Х, м	ΔР _м , MПа	τ ₊ , мск	J ₊ , Пас	I ₊ , Hc	mQ, кДж	Х, м	∆Р _м , MПа	τ ₊ , мск	J ₊ , Пас
	$\Gamma = 1$	1 м, г = 0,0	= 0,5м, r = (),046м, S=	= 0,00664	м ²				
	Взрывы у открытого конца труб									
27,3	0,98	1,3	0,6	280	4,95	3,87	0,48	0,72	0,4	120
27,3	1,0	1,2	0,44	180	3,18	3,87	0,50	0,7	0,35	110
73	1,0	2,01	0,61	520	9,2	73,4	0,50	9,2	0,35	1420
	Взрывы у закрытого конца труб									

27,4	0,98	1,5	0,65	577	10,2	3,87	0,48	1,5	0,45	223
40,5	0,98	2,2	0,71	904	16,0	26,4	0,48	6,7	0,48	1405
76	0,98	3,7	0,75	1605	28,4	73,1	0,48	17,0	0,58	3530

В таблицах 3, 4 приведены характерные результаты измерений при разряде и облучении на конусе самолета в 10 см от входа в ВЗ после окончания выделения энергии и данные измерений в ВЗ, где Е - полная энергия плазмы с учетом энергии горения инициатора разряда из фольги, E_9 – энергия вложенная в инициатор массой m_1 , h и V_1 - высота подъема и объем факела на преграде к концу выделения энергии. $T_{g \ HK}$ - яркостная температура плазмы в ИК области. $\Delta \pi_{0,5}$, $\Delta \pi_{3,4}$, $\Delta \pi_{6,4}$ – безразмерные давления на фронте УВ внутри ВЗ на расстояниях L = 0,5; 3,4 и 6,4м от входа в ВЗ.

Таблица 3. Параметры разрядной и лазерной плазмы перед ВЗ летательного аппарата

		Разрядна	я плазма		Лазерная плазма			
Е, кДж	35	27	19	14	23	19,5	18	30
Е _э , кДж	31	22,7	15	10,4	-	-	-	-
т ₁ , г	0,14	0,14	0,14	0,14	-	-	-	-
V ₁ , литр	52	42	26	20	31	29	-	-
Т _{я ик,} кК	27,5	21	22	21	-	23	-	32

Таблица 4. Безразмерное давление на фронте VB в ВЗ ЛА при разрядах и облучении (звездочки в значениях энергии)

Е, кДж	20,8*	24,2	15,7	16,4	18,3	21,4	30,3*	26,7	35,5
$\Delta \pi_{0,5}$	1,77	1,9	1,65	2,27	2,27	2,28	3,3	3,19	3,40
$\Delta \pi_{3,4}$	0,16	0,2	0,14	0,2	0,21	0,21	0,38	0,37	0,41
$\Delta \pi_{6,4}$	0,013	0,016	0,011	0,06	0,06	0,07	0,080	0,070	0,090
n%	0	0	0	70	70	70	93	93	93

Обсуждение результатов.

Параметры фронта и условия перехода в трубе сферической УВ в плоскую при взрыве мощных ВВ в трубах разного диаметра приведены в [5, 6]. Разработана методика определения параметров фронта УВ в трубах в ближней зоне и эмпирические формулы (1,2) для их расчета при модельных исследованиях. При взрывах на входе трубы

 $\Delta P_{\rm M} = (0,79E/X + 0,39 (E/X)^{0.5}) \exp(-0,004X/r); \tau_{+} = X;$

$$_{+}=1000\Delta P_{M}\tau_{+}/2$$
 (1)

где $\Delta P_{\rm M}$ в МПа, E = mQ/2S в МДж/м², τ_+ в мс, X в м, J₊ в Пас, сечение трубы S = πr^2 . Давление отраженной ударной волны определялось по формуле: $\Delta P_{\rm m} = K_{\rm p}(0,79E/X + 0,39 (E/X)^{0.5})$ *exp(-0,004X/r);

$$K_p = 5,48 \Delta P_M^{0,245}$$
 (2)

На рис. 4 проведено сравнение расчетов и измерений зависимостей J и $\Delta P_{\rm M}$ от энергии взрыва mQ для отраженных УВ при взрывах BB у закрытого и открытого концов труб с применением формул (1,2), когда E = mQ/S и mQ/2S МДж/м², соответственно. При одинаковых массах BB и длинах труб L давление и импульс УВ примерно вдвое выше при взрыве у закрытого конца. При расчетах применялся измеренный коэффициент отражения импульса K_j = 2.06.

Измерения и расчеты параметров УВ в трубах показали, что при отражении от преграды можно почти вдвое увеличить удельный импульс по сравнению с прямой УВ. Снижение давлений по сравнению с контактным взрывом позволяет отказаться от защитных экранов и прокладок во взрывных двигателях увеличить полезную массу М разгоняемых устройств и КПД действия взрыва [6 - 7].

На рис.5 показанызаны зависимости приведенных объемаов от приведенного времени $(V/E)(t/E^{1/3})$ для различных взрывных процессов. Звезда – характерное значение V_1/E для молнии после окончания разряда [2, 3].

Рис. 4. Зависимости удельного импульса J и максимального давдения ΔP_{M} от энергии взрыва mQ в отраженных VB при взрывах у открытого и закрытого конца труб соответственно (сплошные и прозрачные маркеры). Сплошные линии и пунктир-расчеты для L = 1 и 0,5 м по формулам (1,2)

Рис. 5. Зависимости (V/E)(t/E^{1/}3) для взрывных процессов. Мелкий пунктир - взрыв 11 г смеси 50/50 литого ТГ 50/59 [1]

Крупный пунктир - расчет Броуда взрыва тротила. Сплошная линия - расчет Броуда для изотермы 3 кК взрыва горячей сферы [10]. Квадраты – разряд и облучение на конусе самолета с энергией E = 32 кДж при n₁= 0, когда двигатель не работает.

Результаты измерения объемов V плазмы на конусе после окончания разряда приведенных на рис. 5 и таблице 3, можно описать эмпирической формулой V/E₃ = 0,91+29 m₁/E. При m₁/E₃ ~ 0, V₁/E₃ = 0,91, что близко к расчету Броуда [10] для объема ограниченного изотермой 3 кК, для которой V₁/E около 0,75 м³/МДж, что характерно для разряда при молнии.

В таблице 4 и на рис. 6 приведены зависимости $\Delta \pi (r/E^{1/2})$ внутри ВЗ при разных энергиях плазмы и скоростях вращения ротора двигателя от n = 0 до n = 0,93 (r = 0,5; 3,4 и 6,4 м – расстояния от датчиков в ВЗ дот его входа). С увеличением n давление $\Delta \pi$ существенно возрастает. Наличие излома на зависимостях $\Delta \pi (r/E^{1/2})$ на рис.8, от приведенного расстояния вызвано торможением УВ расширяющимся конусом в ВЗ до расстояния 3 м.

Рис 6. Зависимость приращения Δπ максимального давления УВ от приведенного расстояния r/E^{1/2} в м/кДж^{1/2} внутри воздухозаборника при частотах вращения двигателя n = 0 - кресты, n = 0,7 – звезды, r – расстояние УВ от разряда, E – энергия, вложенная в факел

Проведенные наземные исследования показали, что втекание взрывной, разрядной и лазерной плазмы в воздухозаборник ЛА приводит к потере газодинамической устойчивости их газотурбинных двигателей, переход в помпаж и прекращение их работы. Отработанные методы моделирования действия молнии на двигатели ЛА позволили тарировать антипомпажные системы и оценить минимальную энергию плазмы необходимую для поражения ЛА типа МИГ17-23. В условиях опытов антипомпажные системы обычно не успевали восстановить работу двигателя.

С ростом значения n% определяющего скорость продувки двигателя необходимая для срыва его газодинамической устойчивости энергия нагретого газа становилась меньше. При n = 93 % затраты энергии плазмы минимальны. Срыв в работе ГТД наступал после прохождения УВ и областью нагретого газа двигателя, носил вероятностный характер и зависел от энергии или объема плазмы и числа оборотов двигателя. Нарушения в его работе сопровождались выбросом нагретого газа из B3, который регистрировался тепловыми датчиками после прохождения области нагретого газа через компрессор и из сопла, который регистрировался фотокамерами.

Рис.7. Диаграмма, характеризующая энергетические границы срыва (вертикальные линии) работы газотурбинного двигателя при разных частотах n%

Темные и светлые квадраты – нарушение динамической устойчивости двигателя и его отсутствие.

Моделирование воздействия молнии на ЛА, летящие на низких высотах и дозвуковых скоростях, проводились также при его встречном обдуве со скоростями до 500 км/час из сопла другого ЛА [2]. Возможно гибель ИЛ - 16 при тушении лесных пожаров связана с нарушением газодинамической устойчивости двигателя при попадании продуктов горения в воздухозаборник.

Заключение

Приведены результаты исследований параметров ударных волн и плазменного факела при взрывах, разрядах и лазерном облучении на входе труб, при отработке методов моделирования воздействия плазмы и нагретого газа на летательные аппараты. Измерены параметры УВ и нагретого газа на входе и внутри воздухозаборников летательных аппаратов при разрядах и лазерном облучении. Определены минимальные уровни энергии необходимые для нарушения газодинамической устойчивости авиационных двигателей при разных режимах их работы на низких высотах и дозвуковых скоростях.

Литература

- 1. *Христофоров Б. Д.* Параметры радиационных и газодинамических процессов воздушных, приземных и наземных взрывов зарядов массой до 1000 т. // Физика горения и взрыва, 2014. Т. 50. № 1. С. 107.-114.
- 2. *Христофоров Б. Д.* Моделирование газодинамических процессов при грозах мощными электрическими разрядами//Физика горения и взрыва, 2010. Т. 46. № 1. С. 14-19.
- 3. *Христофоров Б. Д.* Моделирование параметров молнии и грома мощным электрическим разрядом и излучением//Академический журнал Западной Сибири, 2013. Т. 9. № 5. С. 116–120.
- **4.** *Соловьев В. О., Христофоров Б. Д.* Моделирование воздействия рентгеновского излучения на ячеистую структуру камеры ЯЭУ // Атомная энергия. 2008. Т. 105. №1. С. 32-38.
- 5. *Khristoforov B.* Investigation of shock wave parameters at explosives blasts in the tubes with air //Universal journal of engineering science. 2013.-(2). P.28–33.
- Khristoforov B. The Study of Large Plastic Deformation and Fracture of Plates by Blast of Explosives in the Tubes// Universal Journal of Engineering Science, 2014. N. 2. P. 49-53.
- 7. Соловьёв В. О. Факторы, влияющие на кпд многоимпульсных взрывных устройств с отражателями // Проблемы машиностроения и автоматизации, 2002. № 3. С. 50-55.
- 8. Рождественский В. Б., Христофоров Б. Д., Юрьев В. Л. Влияние состава продуктов на радиационные характеристики взрыва ВВ в воздухе // Физика горения и взрыва, 1989. № 5. С. 145-148.
- Адушкин В. В., Гарнов В. В., Дивнов И. И., Христофоров Б. Д. и др. Моделирование эволюции газо - пылевого облака, вызванное ударами астероидов и комет // ДАН РФ. 332: (1). 85- 88. Сентябрь. 1993.
- 10. Броуд Г. Гидродинамика взрывов // Расчеты взрывов на ЭВМ. М.: Мир, 1976.
- 11. *Гельфанд Б. Е., Сильников М. В.* Барометрическое действие взрывов // СПб. Издательство Астерион, 2006.