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Abstract: in our country during the main rainy seasons (mei – yu and summer) localized extremely heavy rainfall 

events over lots of regions can frequently result in flooding and landslides. The improvement of the prediction for 

heavy rainfall is very important to reduce its potential for damage. 

Here, we apply to process heavy rainfall forecasting using an artificial neural network OCF(Objective Consensus 

Forecasting) strategy, and estimate prediction skill by multi – model in contradistinction to each of models. 
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Аннотация: в нашей стране во время основного сезона дождей (мэй - ю и летние), локализованные 

чрезвычайно ливневые осадки над большим количеством областей часто приводят к наводнениям и 

оползням. Улучшение прогноза для сильных дождей очень важно, чтобы уменьшить их потенциальный 

ущерб. 

Здесь мы применяем для обработки прогнозирования осадков нейронную сеть OCF (объективный 

консенсус прогнозирования), стратегии и оценку навыков прогнозирования с помощью мульти-модели в 

отличие от каждой из моделей. 
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The heavy rainfall is decided as a precipitation phenomenon to rain 30 mm per 1hour (50 mm per 3 hours, 100 

mm per 12 hours, 200 mm per 24 hours). 

Generally, there are four types of forecasts: (1) qualitative forecast (whether we will have a heavy rainfall or 

not), (2) the probability of heavy rainfall forecast (what is the probability that we will have heavy rain?), (3) the 

probabilities of classified precipitation (what are the probabilities that the amount of rainfall will belong to the 

given categories?), and (4) the quantitative precipitation forecast. 

This study focuses on the qualitative forecast (the dichotomous forecast) of the occurrence of heavy rainfall in 

our country. That is, heavy rainfall forecasting has binary values: whether we will have heavy rainfall or not. 

The method of heavy rainfall forecasting, firstly was one on the basis of a synoptic chart, and then has been 

statistically post processed numerical model output.  

Traditionally, the primary source of guidance for forecasting surface weather conditions has been statistically 

post processed numerical model output. In particular, model output statistics (MOS) derived from the Global 

Forecast System (GFS) provide forecasts of weather parameters at 6 h intervals out to 48 or 60 h, depending on the 

model. 

This type of forecasting guidance has at least two limitations: 1) the models are run only a few times daily, 

allowing forecasts to become several hours old before an updated product is made available, and 2) the MOS 

equations are linear. To alleviate the first limitation, studies have been undertaken to investigate the use of an 

observations-based forecasting system [7]. In this system, a network of surface observations is used as predictors 

in a multiple regression technique. It was demonstrated that this approach could improve the accuracy of ceiling 

and visibility forecasts for the hours between the times that the output from the numerical models is released. 

Moreover, Leyton showed that the introduction of high – density observation networks and high frequency 



observations lead to further improvement [4]. 

The linearity of traditional MOS equations may be a limitation if the underlying relations are nonlinear. To 

allow for more general relations, nonlinear generalizations of multiple regressions have been utilized to model any 

nonlinearity and interactions of the underlying processes. Of course, the nonlinearity of the statistical model does 

not prevent it from capturing linear relations as well.  

For example, temperature forecasts from the Advanced Regional Prediction System have been post processed 

via neural networks, displaying a reduction in bias and error variance of the forecasts [5].  

There, it is found that the optimal neural network is indeed nonlinear. As such, the nonlinear statistical post 

processing yields rainfall forecasts that are more accurate than the model forecasts as well as MOS forecasts. Some 

recent applications of neural networks include nowcasting of visibility from surface observations [6]. 

Clemen surveyed over many papers drawn from meteorology [2]. He concluded that 1) accuracy can be 

substantially improved through the combination of multiple forecasts, 2) simple combinations often work better 

than more complex methods and 3) combining forecasts should become part of mainstream practice. 

The objective consensus forecasting (OCF) system employs bias correction of both multi – model DMO and 

MOS component forecasts followed by consensus merging. It retains the flexibility of DMOs in generating 

forecasts for new sites and models and in quickly exploiting observational and numerical system enhancements yet 

still benefits from available bias corrected MOS forecasts.  

Improvement in OCF accuracy as models improve is achieved by weighting bias corrected component DMO 

forecasts according to their recent accuracy while constraining the sum of weights to one. Gupta and Wilton [3], 

following a review of the literature on combining forecasts, suggested the following desirable properties of the 

compositing method. 

1) It should not require large quantities of data for estimating weights. 

2) It should distinguish between better and poorer available candidate models with the distinction being made 

on precision (i.e., low MAEs or rmse’s) and redundancy (i.e., low cross correlations with other contributing 

forecasts). 

3) Derived weights should be intuitively meaningful. 

More precise and less redundant components should be given higher weight. It is not possible to process 

rainfall forecasts using the OCF strategy because of its discontinuous occurrence. The OCF prediction of rain and 

its probability of occurrence cannot use either bias correction or MAE weights effectively because rainfall is 

discontinuous. 

Section 1 and section 2 describes basic principle of neural network and consensus method, and data to examine. 

Respectively, the main results are presented in section 3. Finally, section 4 provides a summary discussion and 

expected future developments. 

1. The basic principle of neural network and the consensus forecast method 

1.1 Neural network 

When dealing with heavy rainfall modeling, the vector of input variables may consist of IP predictors (
px ) 

and IR precipitation (
rx ) observations, i.e. both autoregressive and exogenous inputs are included, together giving 

the number of input variables (g). The vector of input variables ( jX ) at the j–th time instant can be presented as 

jX =(
p

jx ,…, 
p

IPjx 1 ,
r

jx ,…, 
r

IRjx 1 )
T

=( 1x , 2x ,…, gx )
T

          (1) 

and corresponds to output variable Tjy  – which represents future precipitation. One can then proceed to the 

stage of determining the prediction model F 

Tjy   = )( jXF           (2) 

where T is the prediction horizon. 

The objective function J to be minimized for each model by proper optimization of parameters (h) is defined in 

this paper as: 


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Where n is the number of training or validation set outputs and Tjd   is the measured value of flow 

corresponding to the j –th input vector. 

1.2 Consensus forecast method 

The consensus forecast method is one of combining forecast produces of different types of numerical forecast 

models by weighted average with its forecast skill. 

The parameterization of numerical forecast model isn’t far from perfect and the system errors in the numerical 

forecast produces remain inevitably because of the others of reason. Thus, the consensus forecast is used to 

diminish their system errors.  



From here we explained about the consensus forecast method concretely. 

The consensus method to combine of the different of numerical forecast produces is to weighted mean with 

their forecast skills on each of numerical forecast model. At this moment, each model’s weight is related to its 

forecast skill and the sum of all model’s weights is 1. If iF  are the forecasts and iO  are the observed values on 

some forecast times at some place with one numerical forecast model, Br (Brier Skill) [1] where 
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Then about n contributing forecast models: 

Normalized weighting parameters ( jw ) are calculated by using the inverse mean Br from the Br  samples 

of the n contributing model forecasts  
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Where jM  is the mean Br of j – th contributing forecast model. 

 



N

1N

1

j

j BrM           (6) 

Using these parameters, the consensus forecast iP  based on n model forecasts ( if ) is given by 
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2. Data 

The 6-hours weather forecast system of RJTD and EDZW is now running in our country. For our study, 6 

hour–interval data during 2011 to 2014 at 43 stations in Korea are used. The observations are area – mean amounts 

of rainfall. The predicted and obtained from observation, has a binary response (whether the heavy rain occurred or 

not). In Korea, it is defined that heavy rain occurs when the rainfall is over 30mm h
1

, 50 mm per 3 hours, or over 

200mm d
1

. It is defined by being over 50mm in 6 hours for this study on the 6 weather forecast system. 

The 26 synoptic factors at 43 stations are used as potential predictors for heavy rainfall forecasting. These 

factors include the wind direction and speed, relative humidity, thermal advection, potential precipitation and 

temperatures. They can be generated by the numerical model, called RJTD and EDZW used in Korea. And some 

previous observations are added. 

Table 1 shows that effective prediction induces for heavy rainfall in the precious researches about one’s 

forecast. 
 

Table 1. Potential Predictors 
 

Acronym prediction index Acronym prediction index 

NP Numerical Precipitation DH(85) 
Difference of gravity potential height 

between 850hPa and 500hPa 

BI Boyden index KI K index 

JI Jafferson index Rackliff Rackliff index 

MJI(1) Modified Jafferson index(1) MJI(1) Modified Jafferson index(2) 

TTI Total totals index MTTI(2) Modified TT index(2) 

MTTI(1) Modified TT index(1) PWBI 
Potential wet-bulb temperature 

index 

LFI Lifted Force index CII Convective instability index 

VTG Vertical temperature gradient PCI Potential convection index 

TA(1085) 
Thermal advection 

Between 1000hPa and 850hPa 
DT1 000 

Dew-point temperature at 

1 000hPa 



CVW 
Change of vertical wind 

 
DT925 Dew-point temperature at 925hPa 

AI A index DT850 Dew-point temperature at 850hPa 

SSI Showalter stability index DT700 Dew-point temperature at 700hPa 

RCH The rising congealing height DT500 Dew-point temperature at 500hPa 

 

3. Results 

3.1 Prediction of heavy rainfall by neural network 

We experiment prediction for heavy rainfall classified by each of predictors using products of two types of 

numerical forecast model (RJTD and EDZW) with the neural network. 

Table 3 and table 4 show PSS of prediction for heavy rainfall classified by each of predictors. 
 

Table 2. PSS of prediction for heavy rainfall classified by each of predictors using products of RJTD in prediction period 
 

predictor 
Prediction period(h) 

6 12 18 24 30 36 

NP 0.108 0.1054 0.099 0.094 0.088 0.079 

BI 0.105 0.102 0.095 0.087 0.071 0.069 

JI 0.394 0.367 0.358 0.312 0.304 0.291 

MJI(1) 0.502 0.476 0.427 0.398 0.384 0.378 

TTI 0.493 0.471 0.456 0.451 0.442 0.425 

MTTI(1) 0.341 0.331 0.317 0.296 0.272 0.266 

LFI 0.491 0.488 0.466 0.454 0.437 0.429 

VTG 0.515 0.498 0.457 0.444 0.426 0.401 

TA(1085) 0.061 0.057 0.05 0.041 0.0346 0.022 

CVW 0.1553 0.155 0.145 0.142 0.137 0.127 

AI 0.489 0.485 0.474 0.461 0.412 0.407 

SSI 0.476 0.469 0.451 0.437 0.4012 0.216 

RCH 0.095 0.087 0.076 0.071 0.064 0.057 

DH(85) 0.129 0.131 0.124 0.119 0.128 0.104 

KI 0.437 0.433 0.417 0.408 0.395 0.401 

Rackliff 0.099 0.101 0.094 0.088 0.082 0.084 

MJI(1) 0.295 0.291 0.288 0.281 0.264 0.257 

MTTI(2) 0.448 0.441 0.429 0.411 0.409 0.405 

PWBI 0.465 0.451 0.449 0.417 0.406 0.398 

CII 0.256 0.236 0.231 0.224 0.213 0.207 

PCI 0.188 0.185 0.166 0.161 0.157 0.155 

DT1 000 0.109 0.101 0.096 0.094 0.088 0.071 

DT925 0.436 0.431 0.42 0.404 0.4 0.389 

DT850 0.124 0.117 0.111 0.105 0.11 0.093 

DT700 0.184 0.18 0.171 0.154 0.142 0.134 

DT500 0.179 0.166 0.16 0.147 0.14 0.133 
 

 

 

 

 

 

 

 

 



Table 3. PSS of prediction for heavy rainfall classified by each of predictors using products of EDZW in prediction period 
 

predictor 
Prediction period(h) 

6 12 18 24 30 36 

NP 0.132 0.129 0.127 0.121 0.113 0.109 

BI 0.170 0.167 0.164 0.148 0.143 0.139 

JI 0.122 0.119 0.113 0.107 0.103 0.101 

MJI(1) 0.351 0.343 0.341 0.339 0.337 0.316 

TTI 0.413 0.408 0.402 0.396 0.387 0.351 

MTTI(1) 0.399 0.391 0.374 0.362 0.354 0.349 

LFI 0.477 0.471 0.462 0.454 0.447 0.439 

VTG 0.480 0.477 0.473 0.472 0.468 0.452 

CVW 0.396 0.387 0.371 0.366 0.359 0.352 

AI 0.362 0.363 0.352 0.343 0.332 0.316 

SSI 0.449 0.447 0.438 0.432 0.411 0.407 

RCH 0.109 0.112 0.103 0.11 0.116 0.097 

DH(85) 0.399 0.397 0.382 0.374 0.366 0.358 

KI 0.102 0.092 0.099 0.087 0.094 0.076 

Rackliff 0.361 0.346 0.327 0.313 0.302 0.299 

MJI(1) 0.386 0.383 0.381 0.369 0.374 0.362 

MTTI(2) 0.410 0.402 0.396 0.374 0.362 0.358 

PWBI 0.224 0.214 0.204 0.206 0.213 0.197 

CII 0.256 0.251 0.249 0.248 0.241 0.236 

PCI 0.288 0.289 0.257 0.243 0.232 0.245 

DT1 000 0.116 0.121 0.117 0.116 0.108 0.100 

DT925 0.187 0.18 0.182 0.142 0.165 0.170 

DT850 0.193 0.188 0.176 0.160 0.152 0.160 

DT700 0.110 0.100 0.101 0.099 0.111 0.098 

DT500 0.167 0.166 0.161 0.164 0.154 0.153 

 

As Table 3 and Table 4 shows, in PSS of prediction for heavy rainfall classified by each of predictors using 

products derived from RJTD and EDZW in prediction period, VTG, LFI, KI, AI are higher than the others. Also, 

the longer of prediction period, the smaller of forecast skills. 

Fig 1 shows PSS of prediction for heavy rainfall classified by each of predictors in contradistinction to PSS of 

prediction for heavy rainfall by all predictors using products derived from RJTD. 
 



 

 The mean PSS of prediction for heavy rainfall classified by each predictors 

 The mean TS of prediction for heavy rainfall classified by each predictors 

 The PSS of prediction for heavy rainfall by all predictors 

 TS of prediction for heavy rainfall by all predictors 
 

Fig. 1. PSS of prediction for heavy rainfall classified by each of predictors and of prediction for heavy rainfall by all 

predictors using products derived from RJTD 
 

As Fig 1 shows, the mean PSS and TS of prediction for heavy rainfall classified by each predictors is about 

0.06 and 0.05 higher than the PSS and TS of prediction for heavy rainfall classified by all predictors, and. through 

these courses, prediction skill for heavy rainfall with all predictors as the input dataset of neural network is low, but 

the change of input datasets of neural network improve prediction skills for heavy rainfall by ones. 

Generally, the smaller the coefficient of correlations between variables used input datasets of neural network 

are, the bigger the exact of neural network’s training is, so we estimated the biggest PSS classified by prediction 

periods so that collated predictors with small coefficient of correlations. 

Table 5 shows collated predictors with biggest PSS and table 6 is ones classified by prediction periods. 
 

Table 4. Collated predictors with biggest PSS (prediction period=6h) 
 

Collated predictors PSS TS 

AI, TTI, NP,CVW, PWBI, CII 0.573 0.292 

PCI, DT925,KI, DH(85), TA(1085), BI 0.562 0.287 

DH(85), AI, PCI, CII, DT500, DT700, TTI, TA(1085) 0.560 0.276 

PWBI, DT1000, MTTI(2), DH(85), RCH, TA(1085) 0.551 0.263 

MTTI(1), SSI, TA(1085) 0.551 0.261 

 

Table 5. Collated predictors with biggest PSS 
 

Prediction period Collated predictors PSS TS 

6h AI,TTI,NP,CVW,PWBI,CII 0.573 0.292 

12h TTI,AI,DT1000,TA(1085),RCH,NP 0.496 0.268 

18h MJI(2),DT(925),KI,DH(85),TA(1085),BI 0.481 0.251 

24h AI,TTI,NP,CVW,PWBI,CII 0.472 0.248 

30h DH(85),AI,MJI(2),CII,DT500,DT700,TTI,TA(1085) 0.458 0.236 

36h DT1000,MJI(1),CVW,TA(1085) 0.432 0.218 

 

The coefficient of correlations between AI, TTI, NP, CVW, PWBI, CII used input datasets of neural network 

are 0.006~0.009.The PSS of prediction for heavy rainfall by these collated predictors are higher about 0.25(PSS) 

and 0.1(TS) than the mean of prediction skills for heavy rainfall classified by each of predictors, are higher also 

about 0.31(PSS) and 0.16(TS) than the prediction skill for heavy rainfall by all predictors (Fig 1). 



3.2 Prediction for heavy rainfall by consensus method. 

a. The consensus forecasting for heavy rainfall by collated predictors. 

Let’s see that PSS of prediction for heavy rainfall by effective collated predictors for input datasets of neural 

network is higher than by all predictors or by each of predictors. 

In equation (4), ii OF ,  have binary values: whether we will have heavy rainfall or not.  

Fig 2 shows PSS of prediction for heavy rainfall by the consensus method of the series of effective collated 

predictors classified by each method. As figure 2 show, PSS of prediction for heavy rainfall by first consensus 

method of collated predictors using products derived from RJTD and EDZW in 6–h period is higher about 0.08 ~ 

0.21 than the others, and higher about 0.3than mean ones by each predictors. For example it is higher about 0.11 

than by VTG (0.505).  
 

 

  

 RJ 
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PSS of prediction for heavy rainfall by consensus 

method of collated predictors using products 

derived from RJND in 6–h period 

 

Fig. 2. PSS of prediction for heavy rainfall by the consensus method of the series of effective collated predictors 
 

Table 6 shows the first consensus method of the series of effective collated predictors with the highest PSS by 

RJTD .On occasion by EDZW are same. 
 

Table 6. Consensus method of the series of effective collated predictors with the highest PSS by RJTD 
 

effective collated predictors PSS 

AI, CII, PWBI, BI, PCI, DT1000, DH85, NP, TTI 0.55 

SSI, MJI(1), DT500, DT925, TA(1085) 0.51 

JI,DT700, MTTI(1), MJI(2), CVW, RCH, Rackliff, DT850 0.468 

KI,MTTI(2) 0.35 

VTG 0.48 

LFI 0.52 

 

Starting from these facts, we can understand that the forecasting skill for heavy rainfall by the consensus 

method of the of series of effective collated predictors is higher remarkably than by all predictors and by each of 

predictors using products derived from RJTD as well as EDZW. 

b. Consensus forecasting by combining RJTD and EDZW 

Let’s see PSS and TS for heavy rainfall is high when we forecast by the above-mentioned consensus method of 

combing RJTD and EDZW. Here, from equation (4~7) we estimated PSS and TS for heavy rainfall by multi – 

model consensus method in contrasts of RJTD and EDZW. 

Fig. 3 shows that PSS and TS for heavy rainfall by multi – model consensus method are high about 0.051 and 

0.13 than by RJTD and EDZW. 
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[1] – PSS and TS of prediction for heavy rainfall by consensus 

method of collated predictors using products derived from 

RJTD 

[1] – PSS and TS of prediction for heavy rainfall by 

consensus method of all predictors using products derived 

from RJTD 

[2] – PSS and TS of prediction for heavy rainfall by consensus 

method of collated predictors using products derived from 

EDZW 

[2] – PSS and TS of prediction for heavy rainfall by 

consensus method of all predictors using products derived 

from EDZW 

[3] – PSS and TS for heavy rainfall is high when we forecast 

by the consensus method of combing RJTD and EDZW 

[3] – PSS and TS for heavy rainfall is high when we forecast 

by the consensus method of combing RJTD and EDZW 

  
Fig. 3. PSS and TS for heavy rainfall by multi-model 

consensus method in contrasts of RJTD and EDZW 

Fig. 4. PSS and TS for heavy rainfall by multi-model 

consensus method in contrasts of RJTD and EDZW with all 

predictors 

 

 

Next, we estimated PSS and TS for heavy rainfall by multi – model consensus method in contrasts of RJTD and 

EDZW with all predictors for input datasets of neural network. AS figure 4 shows, PSS and TS for heavy rainfall 

by multi – model consensus method is high about 0.06 and 0.08 than RJTD and EDZW. 

 

4. Discussion 

The conclusions of this study are follows: 

– The skill of prediction for heavy rainfall by effective collated predictors for input datasets of neural network 

is higher than by all predictors or by each of predictors. 

– The skill of prediction for heavy rainfall using products derived from RJTD is higher than from EDZW. 

– The prediction skill for heavy rainfall by multi – model consensus method is high about than RJTD and 

EDZW. 
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